
Small-Disturbance Flow over Three-

Dimensional Wings: Formulation of 

the Problem

CHAPTER 4

One of the first important applications of potential flow theory was the study of

lifting surfaces (wings). Since the boundary conditions on a complex surface can

considerably complicate the attempt to solve the problem by analytical means,

some simplifying assumptions need to be introduced.

In this chapter assumptions will be applied to the formulation of the 3D thin wing

problem and the scene for the singularity solution technique will be set.
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دانشكده مهندسي هوافضا، دانشگاه  - حامد عليصادقي 

خواجه نصيرالدين طوسي

If it is assumed that the fluid surrounding the wing and the 

wake is inviscid, incompressible, and irrotational

The finite wing is moving at a constant speed in an otherwise undisturbed fluid

The angle of attack α:

for the sake of simplicity

4.1 Definition of the Problem

which is automatically fulfilled by the singular solutions such as for the source, doublet, 

or the vortex elements.

wake is inviscid, incompressible, and irrotational

BC1: The boundary conditions require that the disturbance 

induced by the wing will decay far from the wing
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4.1 Definition of the Problem

BC2: Also, the normal component of velocity on the solid boundaries of the wing must 

be zero.

So, the problem reduces to finding a singularity distribution that will satisfy Eq. (4.3).

The distribution is found                     the velocity field (q) is known pressure p 

from the steady-state Bernoulli equation:

complicated analytical solution 
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For difficulty of specifying B.C. 

Eq.(4.3) on a complex shape 

surface & by shape of a wake.

some additional simplifying 

assumptions are made

complicated analytical solution 

for an arbitrary wing shape

Wake model              Helmholtz theorems

if the wing is modeled by singularity

elements that will introduce vorticity

these need to be shed into the flow

in the form of a wake.

4.2 The Boundary Condition on the Wing

The wing solid surface be defined as

The outward normal on the wing upper surface is (from Eq. (2.26)):
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Note: −n is outward normal on lower surface 

The velocity potential due to the free-stream flow is:

Eq. (4.1) is linear so, solution can be divided

into two separate parts:

wing with nonzero thickness

wing thickness 

upper Surface

mean camberlines

lower Surface
Perturbation Velocity 

Potential  



Substituting Eq. (4.7) & derivatives of Eqs. (4.8) & (4.9) into B.C. Eq. (4.3)

Result: The unknown is the perturbation potential φ, which represents the velocity 

induced by the motion of the wing in a stationary frame of reference.

4.2 The Boundary Condition on the Wing

induced by the motion of the wing in a stationary frame of reference.

B.C. on the wing surface by rearranging ∂φ/∂z in Eq.(4.10)

5

The classical small-disturbance approximation will allow us to further simplify this B.C. 

Assume:

From B.C. of Eq. (4.12), the following restrictions on the geometry will follow:

4.2 The Boundary Condition on the Wing

This means that the wing must be thin compared to its chord. 

Note: near stagnation points and near the leading edge

(where ∂η/∂x is not small), the small perturbation 

assumption is not valid.
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Approximating B.C. from the wing surface to 

the x–y plane by a Taylor series expansion:

4.2 The Boundary Condition on the Wing

for small α
Eq. (4.12)

reduce to

The first-order approximation of B.C. Eq. (4.12)

A higher order approximation will be considered in Chapter 7
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only use

linear B.C. defined for a 

thin wing

The shape of the wing is then defined by:

4.3 Separation of the Thickness and the Lifting Problems

Spacifing linear B.C. Eq. (4.17) for both upper & lower wing surfaces

B.C. at infinity (Eq. (4.2)), for the perturbation potential
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Summery: Thin wing continuity equation & its B.C.

4.3 Separation of the Thickness and the Lifting Problems

B.C.

All of above equations are linear
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it is possible to solve three simpler 

problems and superimpose the 

three separate solutions.

4.3 Separation of the Thickness and the Lifting Problems

1. Symmetric wing with nonzero thickness at zero angle of attack (effect of thickness):

where + is for the upper and − is for the lower surfaces.

2. Zero-thickness, uncambered wing at angle of attack (effect of angle of attack):
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3. Zero-thickness, cambered wing at zero angle of attack (effect of camber):

The complete solution for the cambered wing with nonzero thickness at an angle of attack

all three linear B.C.have to be fulfilled at

wing’s projected area on the z = 0 plane



A symmetric wing with a thickness distribution of ηt (x, y)

Symmetry → source/sink →  at wing section centerline

The potential of point source element σ

where r is the distance from the point singularity located at (x , y , z )

4.4 Symmetric Wing with Nonzero Thickness at Zero AOA

where r is the distance from the point singularity located at (x0, y0, z0)

elements are distributed over wing’s projected area

on the x–y plane (z0 = 0) 

The velocity potential at point (x, y, z)

Note: Integration is done over the wing only (no wake)
11

The normal velocity component w(x, y, z)

4.4 Symmetric Wing with Nonzero Thickness at Zero AOA

From Chapter 3

OR
obtaining by observing the volume flow rate
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volumetric flow

obtaining by observing the volume flow rate



Substitution of Eq. (4.35) into the boundary condition

The source distribution is easily obtained 

The velocity potential and differentiating to obtain the velocity field

4.4 Symmetric Wing with Nonzero Thickness at Zero AOA

The velocity potential and differentiating to obtain the velocity field
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Solving the two linear problems of angle of attack and camber together

4.5 Zero-Thickness Cambered Wing at AOA–Lifting Surfaces

doublet distribution

Antisymmetric Problem 

respect to the z direction 
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vortex distribution 

if the lifting problem is to be modeled with 

vortex elements they cannot be terminated at 

the wing and must be shed into the flow. So 

as not to generate force in the fluid, these 

free vortex elements must be parallel to the 

local flow direction, at any point on the wake

Note: for small-disturbance approximation, wake should be planar and placed on z = 0 plane



a. Doublet Distribution

The doublets pointing in the z direction that create a pressure jump in this direction.

Velocity Potential of Doublet (antisymmetric point element) placed at (x0, y0, z0)

Potential at an arbitrary point (x, y, z) due to these elements distributed over the wing

and its wake, (z0 = 0)

4.5 Zero-Thickness Cambered Wing at AOA–Lifting Surfaces

The velocity is obtained by differentiating above Eq. 

and leIng z → 0 on the wing
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Chapter 3

(see Ashley and Landahl,Ref.4.1 - p. 149)

From Ashley and Landahl, (Ref. 4.1):

B.C. Eq.(4.41)  =  Eq. (4.44)

4.5 Zero-Thickness Cambered Wing at AOA–Lifting Surfaces
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The integral equation for the unknown μ(x, y)



b. Vortex Distribution

Vortex line distributes over the wing and wake, as in the case of doublet distribution. 

Computing the velocity ∆q due a vortex line element dl with a strength of ∆Γ by the 

Biot–Savart law

4.5 Zero-Thickness Cambered Wing at AOA–Lifting Surfaces

The component of velocity normal to the 

wing (downwash), induced by these elements:

In this formulation there are two unknown quantities per point

From Helmholtz vortex theorems: vortex strength is constant along a vortex line
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:Vortex element point in y-direction 

:Vortex element point in x-direction 

Considering the vortex distribution on the wing to consist of a large number of 

infinitesimal vortex lines, then at any point on the wing

4.5 Zero-Thickness Cambered Wing at AOA–Lifting Surfaces

The final number of unknowns at a point is 

reduced to one.

For a vortex distribution
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For a vortex distribution

Obtaining the velocity potential on the wing at any point x (y = y0 = const.) by integrating 

the x component of the velocity along an x-wise line beginning at the leading edge (L.E.):

Chapter 3

OR



To construct the lifting surface equation for the unknown γ , the wing-induced  

downwash must be equal and opposite in sign to the normal component of the free-

stream velocity:

4.5 Zero-Thickness Cambered Wing at AOA–Lifting Surfaces
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B.C. Eq.(4.41)  =  Eq. (4.46)

The integral equation for the unknown γ(x, y)

The velocity at any point in the field = free-stream velocity + Perturbation velocity

Substituting q into → Bernoulli equation + Small Disturbance Assumptions

(Eqs. (4.13) & (4.14) & α << 1):

4.6 The Aerodynamic Loads

Aerodynamic 

Loads

Pressures 

Distribution
Velocity Field

Thickness or Lifting 

problems

(Eqs. (4.13) & (4.14) & α << 1):

The pressure coefficient:
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The aerodynamic loads:

The normal to the surface with 

the small-disturbance approximation:

4.6 The Aerodynamic Loads

Wing-attached coordinate system

The components of the force F:
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Wing-attached coordinate system

Evaluating pressure difference across the thin wing (∆p)

positive ∆p is in the +z direction

4.6 The Aerodynamic Loads

The Singularity Distribution

Source

1. Source distribution:
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Pressure Differences 
The Singularity Distribution

placed on the x–y plane
Doublet

Vortex

Symmetry



2. Doublet distribution:

3. Vortex distribution:

For the vortex distribution on the x–y plane the pressure jump can be modeled with a 

vortex distribution

4.6 The Aerodynamic Loads

Pitching moment about y axis for a wing placed at z = 0 surface

S: Refrence area (wing planform area)

b: Refrence moment arm (wing span) 23

4.7 The Vortex Wake

A combination of basic 

solution elements

Satisfy zero normal flow 

B.C. on solid surfaces
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Solution is not unique 

(arbitrary value for Γ)

(a) The circulation is zero .

(b) The circulation is such that the flow at the 

trailing edge (T.E.) seems to be parallel at 

the edge. 

(c) the circulation is even larger and the flow 

turns downward near the trailing edge (this 

can be achieved, for example, by blowing).



The Kutta condition states that:

The flow leaves the sharp trailing edge of an airfoil smoothly & the velocity there is finite.

Finite T.E. angle: normal component of the velocity, from both sides of the airfoil, must 

vanish. for a continuous velocity, this is possible only if this is a stagnation point. 

Therefore, it is useful to assume that the pressure difference there is also zero

If the circulation is modeled by a vortex distribution:

4.7 The Vortex Wake

Cusped T.E.(zero angle): flow leaves T.E. along the bisector line smoothly with finite

velocity. 

Note: for Cusped T.E. Eq. (4.63) must hold even though the trailing edge need not be a 

stagnation point.
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Using vortex distribution to model the lift               Wing as the bound vortex γy(x, y) 

Helmholtz’s theorem

1. A vortex line cannot begin or end in the fluid

2. Any change in γy(x, y) must be followed by an equal change in γx(x, y).

The wing will be modeled by:

1. Constant-strength vortex lines,

2. If a change in the local strength of γy(x, y) is needed then an additional vortex line

4.7 The Vortex Wake

2. If a change in the local strength of γy(x, y) is needed then an additional vortex line

will be added (or the vortex line is bent by ±90◦) such that

Velocity induced by vortex distribution

at a point slightly above (z = 0+) the wing:
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Vorticity free requires that:

4.7 The Vortex Wake
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Any change in vorticity in one direction must 

be followed by a change in a normal direction

In the case of the wing the lifting vortices

(bound vortices) cannot end at the wing (e.g.,

at the tip) and must be extended behind the

wing into a wake. Furthermore, a lifting wing

creates a starting vortex and this vortex may

be located far downstream.

If the wake is modeled by free vortex sheet, it is not creating loads.

This means that the velocity on the wake must be parallel to 

the wake vortices.

A small-disturbance approximation applied to the wake model 

results in:

4.7 The Vortex Wake

OR
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Vortex lines in the wake are 

parallel to the free-stream.



Small disturbance assumption

The continuity equation, Eq. (1.21) is rewritten in the form:

4.8 Linearized Theory of Small-Disturbance Compressible Flow

extending methods of incompressible potential flow to cover cases 

with small effects of compressibility (low-speed subsonic flows)

The inviscid momentum equations, Eqs. (1.31) are:

The propagation speed of the disturbance a (speed of sound) in an isentropic fluid:
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Replaced ∂p/∂x = a2∂ρ/∂x, in the x direction & Multiplying the momentum equations by 

u, v, and w, respectively, and adding them together leads to

Replacing RHS with the continuity equation and recalling the irrotationality condition

∇ ×q = 0

4.8 Linearized Theory of Small-Disturbance Compressible Flow

∇ ×q = 0

Using the velocity potential & free-stream velocity Q∞ = U∞i, and small disturbance

assumption:
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Assuming steady-state flow (∂/∂t = 0), and neglecting the smaller terms in Eq. (4.70):

Using the energy equation for an adiabatic flow, we can show that the local speed of 

sound can be replaced by its free-stream value and the small-disturbance equation 

becomes:

4.8 Linearized Theory of Small-Disturbance Compressible Flow

Using a simple coordinate transformation , called the Prandtl–Glauert rule:
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The pressure coefficient of Eq. (4.53) becomes:

Similarly the lift and moment coefficients become:

4.8 Linearized Theory of Small-Disturbance Compressible Flow

which indicates that at higher speeds the lift slope

is increasing.

Applicable at least up to
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